Jennifer MacKinnon and the swirly things

Most of the big stuff in Earth system science arises from the small stuff. The Keeling curve is the balance between an unknowably large number of microorganisms and the cellular fixation of carbon. Clouds, covering more than half of the planet at any one time, are created at the sub-cm scale. And, increasingly, we are realizing that ocean circulation — once conceived as a sort of monstrous conveyor belt — is instead a motley crew of what Jennifer MacKinnon from the Scripps Institution calls “the swirly things”. Eddies, turbulent billows … “there’s just a ton of animals in the zoo”. Jen talks Mike through the close linkage between observations and theory: it’s hard to conceive of an Antarctic Circumpolar Current composed of a horde of eddies if you can only look over the side of one ship at a time. And the more we observe the ocean, the more interesting it becomes. It now looks, for example, that there may be super-weird interactions between internal waves and mesoscale eddies. More is coming, too, probably from Deep Argo. Yet beyond observations and theory — and as we also heard from Bill Boos — Jen’s kind of science can play a key role in advancing societally-relevant prediction systems. Plus, sabbatical in Palau*, wrestling, and Walter Munk is turning 100 — the party is on!

Music: Springish, All Eventualities and The Everlasting Itch For Things Remote by Gillicuddy. CC BY-NC 3.0.

*In the interview I said that Palau is in the Eastern Pacific. It is, of course, in the Western Pacific.

Jana Sillmann and climate extremes

Jana Sillmann has carved out a career working on understanding and predicting climate extremes — heat waves, heavy rainfall, atmospheric rivers. What combination of factors controls the occurrence of extremes, particularly in a changing climate? Jana and Mike hash through the underlying science — including the agonizingly slow pace of model development — and how society is affected by and responds to extremes. Jana’s background and pathway to her current position are equally fascinating: an idyllic childhood in communist East Germany, with mom teaching construction; exchange student in rural North Dakota, hosted by an accordion virtuoso; grad school in the US; realizing that a career with computers and coffee was preferable to field work; chance exposure to an inspirational talk by Mojib Latif; a PhD from the Max Planck in Hamburg; four years in Canada with people like Francis Zwiers; leaving Canada in response to the anti-science politics of the time (sound familiar?); finally, moving to what sounds like a fabulous position at CICERO in Norway, where, remarkably, society actually seems to fully support women in science. And the ideal science environment? A sprinkle of Norwegian funding for individual academics, a bit of German support for postdocs and grad students, and a splash of Canadian IT investment.

Jana Sillmann. Credit: CICERO

Music from the album Encounters by Metastaz CC-BY-NC 4.0. Includes the tracks HashashinVampire, and Girl and Assassin.

Monsoons with Bill Boos

Bill Boos and I have something in common. Neither of us is much of a long-term planner, but we both like to take advantage of opportunities as they arise. For me, this approach led to a switch from academia to editing. For Bill, it led to an in-process move from Yale to UC Berkeley.

Bill’s career had plenty of twists and turns along the way. Namely, we almost lost him to the dark side … a career in financial consulting at Anderson (now Accenture). Happily, that path didn’t prove sufficiently interesting, and Bill landed in a terminal one-year MS program at MIT, where he started his work with Kerry Emanuel. Except it wasn’t so terminal.

Post-graduation, Bill checked out the professional job market, but quickly found that:

The best job that I’ve interviewed for is not as interesting as staying in graduate school

Things started to click with Kerry, and Bill pursued work on fairly theoretical ocean and atmospheric dynamics. But soon after graduation he published a landmark paper suggesting that a strong Indian monsoon can be generated solely by the presence of the Himalayas: no Tibetan Plateau required. I found the paper fascinating when I handled it at Nature, and it certainly stirred things up in the monsoon community.

As I’ve mentioned on the show in the past, monsoons are endlessly vexing: tantalizing but ephemeral teleconnections; busted predictions; monstrous interannual variability; conceptually simple but terribly complex in the details. One approach to disentangling the mess might be, as Bill puts it, to start off with a clear null-hypothesis:

Can we disprove the hypothesis that this year-to-year variability is just random and we’ll never be able to predict it?

Answering the question would inevitably take a renewed focus on observations, a deep dive into reconstructing past variability, and improved dynamical understanding.

One area of low-hanging fruit — or at least fruit that could be reached by a long extension pole, perhaps while teetering at the top of a rickety three-meter wooden ladder, the base of which has long been under assault by termites — is monsoon depressions. These systems, a topic of much research in the 1970s-1980s, don’t look that horrendous in comparison to typhoons, but end up generating some of the most destructive storms. Why? Bill would like to know. Me too.

Gabe Vecchi

Gabe Vecchi is a world-famous atmospheric scientist with a pretty simple attitude to making progress: In order to do something, you need to do it. And Gabe’s done a lot!

Gabe Vecchi. Credit Igor Heifetz.

He was born in Boston but grew up in Venezuela, and witnessed the country’s dissolution from an intellectual magnet for South America into a dystopian nightmare. Going into the interview, I wondered about Gabe’s perspective on the anti-science, inward-looking trends we’re now seeing in the US. Are we headed for the same fate?

At this point, it’s impossible to say. But what I can say is that Gabe’s enthusiasm for science is undiminished by current politics. It was, in fact, kind of refreshing to talk to someone outside of the Bay Area echo chamber in which I live. It’s good to see science (and home renovations and new jobs) remaining at the forefront.

Gabe’s grandparents immigrated to Venezuela from Italy, and he lived there until his early teens. Ending up as a scientists might have been inevitable:

I think having [an] engineer and artist [as parents] … the only natural outcome is to be a scientist

And even though Gabe began knowing, as he says, just about nothing, he went on to make some of the major advances in atmospheric dynamics, tropical cyclones and seasonal prediction over the past couple of decades, including the now-famous modeling of a reduced zonal circulation in the equatorial Pacific.

Working in the Geophysical Fluid Dynamics Laboratory, with brilliant colleagues like Isaac Held and Suki Manabe, played a part in Gabe’s success. But still, and as so often seems to be the case, some of the big findings arose almost by accident.

By working on the still-not-fully-cracked nut of estimating changes in hurricane frequency and intensity in a warming climate, Gabe and his colleagues ended up with a modeling system with seasonal skill in regional hurricane prediction. The field is now able to resolve the small scale interactions between hurricanes and the large scale environment. Probably, as Gabe says, they wouldn’t have gotten to seasonal hurricane prediction if they’d been trying to do so:

You can’t see things if you look at them directly

As always with forecasting/prediction, it is easy to get carried away. But Gabe has a healthy skepticism for all sorts of modeling, prediction included:

Skill when applied to the past tends to be higher than skill going forward

Most importantly, one should keep a careful eye out for wild-eyed optimism or irrational exuberance:

The better you feel about it the worse it behaves … the probability of misleading yourself can be very high

Now in a multi-disciplinary department at Princeton, Gabe is looking both forwards and backwards. Forwards, to a closer collaboration with the geochemical proxy community, to unravel some of the many competing hypotheses for modern processes. Backwards, to hopefully develop a state-of-the-art yet simple climate model that could be run in a desktop machine by any interested academic, rather than at a super-computing facility.

Either way, there is endless scope for peeking under the mossy rocks of science, or looking for the structural members that we still need to install:

The things that we already know are much less interesting … if I can find something that we don’t know or that is kind of broken, then that’s great

Today’s music is from the album Anthropomorphic by Sister Sadie’s Foundry. Vocals and acoustic guitar are by geochemist Mark Pagani, who passed away in November 2016. I knew Mark just a little bit, but enough to know that he had a raging passion for science and life. At the time, I didn’t know about his wild musical chops, but they’re impressive for sure. In some ways, Gabe reminds me of Mark, and I thought the music would be a great match for today’s interview. Clips are used with the kind permission of Teresa Pagani and Michael Powers. Songs are Coming up for Air, Dry Land, and Skull and Bones. I encourage you to check out the album — it’s great!

Nerilie Abram

Alternative facts are much in the news. The idea is, of course, ridiculous. Some things are clearly facts. Pizza is delicious; cake makes me happy; serving a white Burgundy at 40 F is an abomination; you should never wear a backpack with a suit.

Much of climate science, however, is not what you would call a hard fact. Yes, we can begin with some facts, following immediately with a suite of questions on quantification and mechanism. Yes, the Greenland Ice Sheet is losing mass. But what is driving the variations in time and space, are there physical limitations to retreat rates, what are the constraints on ice sheets behavior from paleoclimate, what is the role of firn/cryoconite/black carbon?

Research moves to the open questions, which, to some, provides an opening to say that scientists don’t have the facts. For the immediate questions at hand, it is of course true that we don’t have the answers — that’s why there’s research! Let’s not lose track of the vast amount of knowledge, and the big picture facts, that we do have.

Rant over, at least for now!

Nerilie Abram. Credit: Stuart Hay.

Sometimes I don’t fully grasp the scope of what Forecast guests are doing until I have time to reflect, during editing or while writing the show notes. That was certainly the case with today’s guest, Nerilie Abram. Nerilie has astonishingly broad interests. She works with corals, ice cores, speleothems, and modelers on topics all over the world (literally!) from the past to the future.

Much of our discussion centered around the process by which Nerilie cracks open new topics: framing questions, conducting research, challenging her own ideas, and grinding through the review process. Over time, this is the work that ends up in the fact category. It takes, in addition to mad technique, stubbornness:

Science requires, for all sorts of reasons, people who are going to be able to stick it out in this game, to have that kind of determination … not just the skills

Facts are indeed hard to come by, and proxies can be particularly bedeviling, particularly if one takes the time to actually think about them:

When you’re dealing with indirect proxies, things can change that you’re not expecting

The geochemistry behind proxies is hard enough. Interpreting the data with physically meaningful hypotheses, and testing everything with compelling statistics — is even harder. Nerilie is doing all of this, on topics ranging from tropical ocean-atmosphere-coral interactions, Holocene climate, sea ice proxies, and hemispheric reconstructions.

All of which makes me think of Nerilie as the Danny Meyer of science. What, you’re running a restaurant in a museum now? Or in Nerilie’s case, what, you had a quick talk with Nick Shackleton and now you’re off to the British Antarctic Survey? Smashing!

And the field work. Oh yes, the field work. Plenty of people get into geosciences for the amazing field sites. Nerilie never said that she’s in it for the travel, but it couldn’t have hurt.

Music: Alice in Horror Land by Voodoo Puppets CC BY 3.0; Russki Psycho by The Vivisectors CC BY-NC-ND 4.0; Sleepwalkin’ by The Carmines CC BY-NC-SA 4.0.

Noah Diffenbaugh

I like doing Forecast for a lot of reasons. I get my fingers into the entrails of science in a way that isn’t really possible from reading submissions. I hear some appalling stories, off the record. I’m caught up in the enthusiasm of scientists for what they’re dreaming of discovering in the next decade. But, maybe most of all, I get to ask all kinds of impertinent questions that would rouse the ghost of John Maddox if done during the course of normal editor-scientist interactions.

Noah Diffenbaugh. Credit: Linda Cicero, Stanford University.

And so it is with my interview with Noah Diffenbaugh, one of the leading investigators of extreme events in a changing climate, and a friend for over 10 years. Getting to know someone in science, especially after grad school, is weird, as huge chunks of their being remain out of view. Indeed I am often reminded of the blind men and an elephant. Perhaps before I only saw Noah’s enormous feet and extravagant tail, without realizing his true self. I am not at all sure that I do now, but at least it is clear he is a pachyderm.

Noah grew up at the Mount Madonna Center, one of the intentional communities that erupted like mushrooms from the rains of the 1960s’ spiritual and yoga movements. Most withered under divisiveness, absolutism, and isolationism. Mount Madonna, though, continues to thrive. Yes, it was, and is, a yoga and communal life center. But it is not a cult. Instead, it is open to the outside world, and has grown to support a renowned school and series of cultural events.

Mount Madonna’s sense of openness and inquiry are a clear feature of Noah’s work and collaborations. Our work together, on topics like wine and climate, grew from a short chat in an elevator during an NCAR young scientist boot camp. In general, because it’s impossible to tell which collaborations are going to work out, Noah’s default is yes.

Saying yes has clearly worked for Noah. He spent time at Purdue and is now tenured at Stanford, one of the premier universities in the world (and a very tough place to get tenure). Noah’s involved in the IPCC, regularly consults with a huge range of public and private interests, and publishes in Science and Nature. The path to the top was clear, and swift.

Except, no. Noah was an undergrad premed at Stanford. Until he failed, spectacularly, Chem 31. Then it was, almost, a degree in religious studies. But, no. Earth Systems 10 proved riveting and, fortunately for the field (and my own academic career!), Noah turned to science.

At least for a while. Upon graduation, Noah returned to Mount Madonna. He taught at the center’s school but a broader direction eluded; restlessness grew; the benefits and costs of communal life came into sharper focus.

I essentially didn’t go through adolescence and didn’t really leave home until my mid 20s when I was already married and already had a kid

For a lot of us, grad school attracts because it is something to do that seems potentially valuable, interesting and fun, without having to make an absolute choice about what, exactly, you’re committing to. So it was for Noah.

I went to grad school, and I made my grad school decision, for all the wrong reasons … if I ever said out loud my motivation and what I was thinking … I don’t think I would ever get admitted

And leaving home, surprisingly, only meant moving a few miles from Mount Madonna to UC Santa Cruz. Noah eventually settled on paleoclimate research with Lisa Sloan, but only after considering other — and wildly unrelated — options.

Since then, I think the path has been clearer, and Noah has made major contributions to our understanding of extreme heat, among many other topics. Most of our conversation, however, had a decidedly philosophical bent to it, and we wrapped up with a discussion of how the US presidential election at least had the useful outcome of prompting Noah to think about how scientists communicate statistics.

We talked for almost two hours, and still did not get to a lot of topics I wanted to cover (being the chief editor for GRL, life as an academic in Silicon Valley, gender balance in science, non-governmental funding). Editing the interview down to something reasonable took me forever, but I wanted to keep as much as possible. I think the story of Noah’s path through life and science could prove useful, especially for young scientists starting out and wondering if any of your role models also wondered … what am I doing in grad school, why did I pick this advisor, why am I studying this topic, am I really this bad at lab work. Yes. Yes they did. You too might come out the other side.

Music: Solitude, by Broke For Free. CC BY-NC-ND 4.0.


Josh Willis

Normally my show notes are carefully reasoned, sober discussions of the remarkable pathways forged by inspirational scientists, and their subsequent breakthroughs. Not this time. This time, I will begin with a headline about today’s Forecast victim guest, Josh Willis, that might be suitable for The Onion:

Idiot leftist scientist thrown out of school, concludes that warm water melts ice

Josh Willis

This is all true, from a certain point of view. Josh was called an idiot leftist scientist by Rush Limbaugh (a moniker enthusiastically adopted by Josh and, err, Josh’s wife), had to leave his PhD program in Physics, and is now leading the massive Oceans Melting Greenland program. But a more realistic telling is doubtless in order.

Josh grew up in Texas and completed a bachelor’s degree in Physics at the University of Houston. There, in the honors program, he met his future wife, a California native. The two soon relocated to SoCal, where Josh entered the PhD program in physics at the University of California San Diego and his wife attended medical school in Los Angeles.

Physics, however, was not to be Josh’s calling and he ultimately did not pass the departmental examinations. Although he came out with a master’s degree in physics, the experience was certainly a setback, and one that took Josh a year or two to get over.

Failure, as is so often the case, had an upside. Rather than inducing a downward spiral, the physics experience ultimately proved a huge relief for Josh, and one that led him to a vastly more fulfilling career studying oceanography at Scripps, where he worked with the great Dean Roemmich. There, Josh did some of the early work on coupling satellite altimetry with ocean observations to estimate ocean heat content.

The start of Josh’s PhD coincided almost exactly with one of the most important advances in oceanography, maybe ever: the Argo program. As Josh says

It was super exciting … it was also kind of scary … In retrospect it seems obvious, but at the time, it was almost crazy

The launch of the incredible Argo data stream created nearly new fields of inquiry, particularly into ocean heat content. But as is the case with any new data explosion, particularly when trying to bolt it onto older datasets, problems can emerge. Josh and his colleagues published a paper entitled “Recent cooling of the upper ocean“, but soon found out that the cooling was due to problems in both the earlier XBT data and software problems in a group of North Atlantic Argo floats. A correction soon followed. I completely view this as a positive, rather than negative, example of how climate science actually functions: scientists follow the data, and revise their conclusions based on new information.

Unfortunately, Josh figured out the error upon walking out the door for a Valentine’s day dinner with his wife. Dinner was a disaster, and

As retribution, my wife had business cards made that have my job title as idiot leftist scientist

Josh’s fake business card, kindly made by Josh’s wife after he botched a Valentine’s day dinner.

Now Josh is pursuing one of the main topics in sea level research: the interactions between Greenland’s marine-terminating glaciers and the surrounding ocean. Prior work had revealed some of these interactions in particular fjords, but Josh and his colleagues are now conducting systematic radar surveys of all of Greenland’s outlet glaciers, combined with sensors parachuted into the fjords. The project — Oceans Melting Greenland — is in the data collection phase, and is part of a recent special issue in Oceanography. Once complete, we should have a much better idea of how and where ice-ocean interactions are strongest, and what the implications will be for sea level rise.

Josh has a wicked sense of humor, even in the face of potential impending disaster for federally-funded climate science. Just check out Dick Dangerfield on the video section of the OMG Facebook page. I like episode 1 in particular.

Music: As Colorful As Ever, by Broke For Free. CC BY-NC 3.0.

Jon Foley

Jonathan Foley is the Executive Director of the California Academy of Sciences, the previous director of the Institute on the Environment at the University of Minnesota and the founder of the Center for Sustainability and the Global Environment at the University of Wisconsin. In many ways, Jon is one of the foremost thinkers and actors about the science of sustainability. Continue reading →

Bronwyn Wake chief editor of Nature Climate Change

How, exactly, does one get to be an editor of a Nature-branded journal? What do we do? How do we decide what to publish? And what’s up with all our journals? In this episode of Forecast, I hash out these issues with Bronwyn Wake, the chief editor of Nature Climate Change. But don’t worry … if you’re thinking about becoming an editor, working in a bar is not a prerequisite. Continue reading →

Daniel Aldana Cohen on urban climate mitigation

Climate scientists are used to the idea of climate mitigation. But few are involved in the nitty-gritty of what climate mitigation might look like at the local or even neighborhood level. Daniel Aldana Cohen from the Department of Sociology at the University of Pennsylvania is digging into the politics and sociology of urban carbon emissions. A dizzying array of forces are at work. Continue reading →