Nerilie Abram

Alternative facts are much in the news. The idea is, of course, ridiculous. Some things are clearly facts. Pizza is delicious; cake makes me happy; serving a white Burgundy at 40 F is an abomination; you should never wear a backpack with a suit.

Much of climate science, however, is not what you would call a hard fact. Yes, we can begin with some facts, following immediately with a suite of questions on quantification and mechanism. Yes, the Greenland Ice Sheet is losing mass. But what is driving the variations in time and space, are there physical limitations to retreat rates, what are the constraints on ice sheets behavior from paleoclimate, what is the role of firn/cryoconite/black carbon?

Research moves to the open questions, which, to some, provides an opening to say that scientists don’t have the facts. For the immediate questions at hand, it is of course true that we don’t have the answers — that’s why there’s research! Let’s not lose track of the vast amount of knowledge, and the big picture facts, that we do have.

Rant over, at least for now!

Nerilie Abram. Credit: Stuart Hay.

Sometimes I don’t fully grasp the scope of what Forecast guests are doing until I have time to reflect, during editing or while writing the show notes. That was certainly the case with today’s guest, Nerilie Abram. Nerilie has astonishingly broad interests. She works with corals, ice cores, speleothems, and modelers on topics all over the world (literally!) from the past to the future.

Much of our discussion centered around the process by which Nerilie cracks open new topics: framing questions, conducting research, challenging her own ideas, and grinding through the review process. Over time, this is the work that ends up in the fact category. It takes, in addition to mad technique, stubbornness:

Science requires, for all sorts of reasons, people who are going to be able to stick it out in this game, to have that kind of determination … not just the skills

Facts are indeed hard to come by, and proxies can be particularly bedeviling, particularly if one takes the time to actually think about them:

When you’re dealing with indirect proxies, things can change that you’re not expecting

The geochemistry behind proxies is hard enough. Interpreting the data with physically meaningful hypotheses, and testing everything with compelling statistics — is even harder. Nerilie is doing all of this, on topics ranging from tropical ocean-atmosphere-coral interactions, Holocene climate, sea ice proxies, and hemispheric reconstructions.

All of which makes me think of Nerilie as the Danny Meyer of science. What, you’re running a restaurant in a museum now? Or in Nerilie’s case, what, you had a quick talk with Nick Shackleton and now you’re off to the British Antarctic Survey? Smashing!

And the field work. Oh yes, the field work. Plenty of people get into geosciences for the amazing field sites. Nerilie never said that she’s in it for the travel, but it couldn’t have hurt.

Music: Alice in Horror Land by Voodoo Puppets CC BY 3.0; Russki Psycho by The Vivisectors CC BY-NC-ND 4.0; Sleepwalkin’ by The Carmines CC BY-NC-SA 4.0.

Jon Foley

Jonathan Foley is the Executive Director of the California Academy of Sciences, the previous director of the Institute on the Environment at the University of Minnesota and the founder of the Center for Sustainability and the Global Environment at the University of Wisconsin. In many ways, Jon is one of the foremost thinkers and actors about the science of sustainability. Continue reading →

Amelia Shevenell, big ideas and big risks

Amelia Shevenell from the University of South Florida specializes in big ideas about paleoceanography and the Antarctic Ice Sheet. She’s also keen to push the methodological envelope, which can be risky if things go pear shaped. For Amelia, though, the work resulted in papers in Science (Mg/Ca) and Nature (TEX86). Continue reading →

Scott St. George on tree rings

Scott St. George
Scott St. George

Tree rings are one of the key tools in paleoclimate research, and might seem like nothing more than big, woody thermometers. But tree-ring science is ever evolving, constantly debated, and — while it has answered some major questions — still grapples with making the connection to broader climate questions.

Continue reading →

Rob DeConto and Antarctica in the climate system

I think I first learned of Rob DeConto when I saw his paper entitled Thresholds for Cenozoic bipolar glaciation, published soon after my arrival at Nature.  Specific and testable thresholds for the initiation of large scale glaciation in Antarctica and the Northern Hemisphere? Interesting! Continue reading →

Gabi Hegerl on detection and attribution of climate change

Gabi Hegerl is famous for her work seeking to understand the processes driving climate variability, but she was initially destined to study language arts, and started off with seven years* of schooling in Latin. Continue reading →

Jerry Mitrovica and geological influences on sea level rise

Jerry Mitrovica from Harvard University sits at the surprisingly wobbly interface between the solid Earth, oceans and ice. Trained in serious geophysics, Jerry quickly found a niche in explaining how movements of the Earth’s mantle – in three dimensions – control the apparent variation of past sea levels. In many cases, this means pointing out that many or all of our records of past sea level are fundamentally altered by processes like dynamic topography and isostatic rebound. Continue reading →

Tina van de Flierdt explains paleoceanography proxies

Tina van de Flierdt from the Department of Earth Science and Engineering at Imperial College London is an international leader in the use of geochemical proxies – particularly neodymium (Nd) – for reconstructing past ocean circulation, water masses and weathering. But her childhood and early interests pointed in a different direction. Continue reading →

Valérie Masson-Delmotte and the jigsaw puzzle of climate science

For Valérie Masson-Delmotte, climate science is like a jigsaw puzzle. Unlike a house of cards, where the removal of one element causes the whole thing to crash down, the central picture of a puzzle is still apparent when pieces — maybe even many pieces — are missing. Continue reading →

Into the deep ocean with Lorraine Lisiecki

Lorraine Lisiecki is in the business of understanding past variations in ocean circulation. In particular, she uses mathematical approaches to interpret observed variations in δ18O and δ13C on times scales of thousands to millions of years.

Continue reading →