Connecting Kevin Anchukaitis

Kevin Anchukaitis from the University of Arizona is probably best known for his work on dendroclimatology, but this is changing quickly. Now, his broader interests in the connections among history, political science, archaeology, statistics, climate modeling, and forward modeling of proxies are increasingly mirrored within the broader field of late Holocene paleoclimate research. Now, it’s possible to bring together this astonishingly wide range of evidence to disentangle, for example, the influence of volcanic eruptions on climate and society. It ends up sounding like a golden age for climate science, if not for the extinct Monteverde golden toad, whose extinction Kevin showed to be due to a fungal disease coupled with natural climate variability. As always, with good science, you have to go where the evidence takes you.

Gabe Vecchi

Gabe Vecchi is a world-famous atmospheric scientist with a pretty simple attitude to making progress: In order to do something, you need to do it. And Gabe’s done a lot!

Gabe Vecchi. Credit Igor Heifetz.

He was born in Boston but grew up in Venezuela, and witnessed the country’s dissolution from an intellectual magnet for South America into a dystopian nightmare. Going into the interview, I wondered about Gabe’s perspective on the anti-science, inward-looking trends we’re now seeing in the US. Are we headed for the same fate?

At this point, it’s impossible to say. But what I can say is that Gabe’s enthusiasm for science is undiminished by current politics. It was, in fact, kind of refreshing to talk to someone outside of the Bay Area echo chamber in which I live. It’s good to see science (and home renovations and new jobs) remaining at the forefront.

Gabe’s grandparents immigrated to Venezuela from Italy, and he lived there until his early teens. Ending up as a scientists might have been inevitable:

I think having [an] engineer and artist [as parents] … the only natural outcome is to be a scientist

And even though Gabe began knowing, as he says, just about nothing, he went on to make some of the major advances in atmospheric dynamics, tropical cyclones and seasonal prediction over the past couple of decades, including the now-famous modeling of a reduced zonal circulation in the equatorial Pacific.

Working in the Geophysical Fluid Dynamics Laboratory, with brilliant colleagues like Isaac Held and Suki Manabe, played a part in Gabe’s success. But still, and as so often seems to be the case, some of the big findings arose almost by accident.

By working on the still-not-fully-cracked nut of estimating changes in hurricane frequency and intensity in a warming climate, Gabe and his colleagues ended up with a modeling system with seasonal skill in regional hurricane prediction. The field is now able to resolve the small scale interactions between hurricanes and the large scale environment. Probably, as Gabe says, they wouldn’t have gotten to seasonal hurricane prediction if they’d been trying to do so:

You can’t see things if you look at them directly

As always with forecasting/prediction, it is easy to get carried away. But Gabe has a healthy skepticism for all sorts of modeling, prediction included:

Skill when applied to the past tends to be higher than skill going forward

Most importantly, one should keep a careful eye out for wild-eyed optimism or irrational exuberance:

The better you feel about it the worse it behaves … the probability of misleading yourself can be very high

Now in a multi-disciplinary department at Princeton, Gabe is looking both forwards and backwards. Forwards, to a closer collaboration with the geochemical proxy community, to unravel some of the many competing hypotheses for modern processes. Backwards, to hopefully develop a state-of-the-art yet simple climate model that could be run in a desktop machine by any interested academic, rather than at a super-computing facility.

Either way, there is endless scope for peeking under the mossy rocks of science, or looking for the structural members that we still need to install:

The things that we already know are much less interesting … if I can find something that we don’t know or that is kind of broken, then that’s great


Today’s music is from the album Anthropomorphic by Sister Sadie’s Foundry. Vocals and acoustic guitar are by geochemist Mark Pagani, who passed away in November 2016. I knew Mark just a little bit, but enough to know that he had a raging passion for science and life. At the time, I didn’t know about his wild musical chops, but they’re impressive for sure. In some ways, Gabe reminds me of Mark, and I thought the music would be a great match for today’s interview. Clips are used with the kind permission of Teresa Pagani and Michael Powers. Songs are Coming up for Air, Dry Land, and Skull and Bones. I encourage you to check out the album — it’s great!

Valérie Masson-Delmotte and the jigsaw puzzle of climate science

For Valérie Masson-Delmotte, climate science is like a jigsaw puzzle. Unlike a house of cards, where the removal of one element causes the whole thing to crash down, the central picture of a puzzle is still apparent when pieces — maybe even many pieces — are missing. Continue reading →

Into the deep ocean with Lorraine Lisiecki

Lorraine Lisiecki is in the business of understanding past variations in ocean circulation. In particular, she uses mathematical approaches to interpret observed variations in δ18O and δ13C on times scales of thousands to millions of years.

Continue reading →

Kim Cobb on El Nino, geochemistry and women in science

Obsessed by El Niño

Corals and speleothems are some of our most useful recorders of past climate variability. The spectacular speleothem records from eastern China, for example, have been instrumental in building our understanding of past variations in the East Asian Monsoon. But as is the case for most any paleoclimate proxy, corals and speleothems do not record a direct record of … well, anything.

Continue reading →